Höhenlinien, partielle Ableitungen

Aufgabe 1.

Zeichnen Sie ein Höhenliniendiagramm zu der Funktion z = f(x, y) = 4 - x + 2y.

Aufgabe 2.

Geben Sie zu der Funktion $z=f(x,y)=\sqrt{y-x^2}$ den Definitions- und den Wertebereich an; skizzieren Sie den Definitionsbereich. Zeichnen Sie ein Höhenliniendiagramm der Funktion.

Aufgabe 3.

Skizzieren Sie die folgenden Funktionen im ersten Oktanten $(x,\,y,\,z\geq 0)$ des Koordinatensystems; dabei sollen auch die Schnittkurven mit den Koordinatenebenen skizziert werden. Zeichnen Sie außerdem zu jeder Funktion ein Diagramm mit fünf Höhenlinien.

a)
$$z = 1 - x - y$$
 b) $z = \sqrt{x^2 + y^2}$ c) $z = x^2 + y^2$

Aufgabe 4.

Berechnen Sie zu den folgenden Funktionen die partiellen Ableitungen 1. Ordnung.

a)
$$f(x,y) = xy^3 - 7x^2y^4$$
 b) $z = \sin(x)\cos(y)$ c) $u(r,\varphi) = re^{-\varphi^2}$
d) $z = \frac{1}{1+x^2+y^2}$ e) $f(x,y,z) = x^2y+y^2z$ f) $w = (x+z^3)e^{-(x^2+y^2)}$

Aufgabe 5.

Verifizieren Sie $f_{xy} = f_{yx}$ bei den folgenden Funktionen.

a)
$$f(x,y) = x^3(y^2 - 4x)$$
 b) $f(x,y) = \ln(1 + x^2 + y^4)$

Aufgabe 6.

Zeigen Sie, daß die folgenden Funktionen w = f(x, y) die Gleichung $w_{xx} + w_{yy} = 0$ (die zweidimensionale *Laplace-Gleichung*) erfüllen.

a)
$$w = e^{ax} \sin(ay)$$
 (a konstant) b) $w = \ln(x^2 + y^2)$