Differentialgleichungen, Folgen und Reihen

Name:	Matrikelnr.:

Gesamtpunktzahl: 10 Erreichte Punktzahl:

1. (2 Punkte) Die Anfangswertaufgabe

$$y'' = \sqrt[3]{y^2 - 5y'\sin(x)}$$
, $y(0) = 6$, $y'(0) = 13$

soll in ein System von Differentialgleichungen 1. Ordnung mit den entsprechenden Anfangsbedingungen umgeschrieben werden.

2. (2 Punkte) Zu einer arithmetischen Folge sind die Glieder $a_2=18$ und $a_4=42$ gegeben. Gesucht sind a_1 und a_6 .

Zu einer geometrischen Folge sind die Glieder $b_k = 96$ und $b_{k+1} = 48$ gegeben und b_{k-1} sowie b_{k+3} gesucht.

arithmetische Folge: $a_1 =$

arithmetische Folge: $a_6 =$

geometrische Folge: $b_{k-1} =$

geometrische Folge: $b_{k+3} =$

3. (2 Punkte) Berechnen Sie den Grenzwert der Reihe

$$\sum_{k=1}^{\infty} \frac{2^{k-1}}{5^k} \, .$$

Das Ergebnis soll als gekürzter Bruch geschrieben werden.

(Hinweis: $\sum_{n=0}^{\infty} q^n = 1/(1-q)$ für |q| < 1.)

4. (2 Punkte) Die homogene Differentialgleichung y''+8y'-9y=0 hat die Lösung $y_h=C_1e^{-9x}+C_2e^x$. Berechnen Sie die vollständige Lösung der inhomogenen Differentialgleichung

$$y'' + 8y' - 9y = -81x.$$

5. (2 Punkte) Berechnen Sie zu der Funktion f(x) = 1/(1+x) die ersten drei nichtverschwindenden Glieder der Taylorreihenentwicklung um $x_0 = 1$. (Hinweis: Zu einer Funktion f ist die Taylorreihe mit Entwicklungspunkt x_0 durch $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ gegeben.)