Folgen

• Definition

Wird jedem $n \in \mathbb{N}$ eine Zahl a_n zugeordnet, so entsteht eine **unendliche Zahlenfolge**

$$a_1, a_2, a_3, \ldots$$

Schreibweise: $(a_n)_{n=1}^{\infty}$ oder kurz (a_n) .

Die Zahlen a_n heißen $\operatorname{\textbf{\it Glieder}}$ der Folge.

• Anmerkung:

- (a) Die Indizierung darf statt mit 1 auch mit jeder anderen ganzen Zahl beginnen.
- (b) Eine Folge kann als Funktion f mit

$$f: \mathbb{N} \longrightarrow \mathbb{R}, \qquad f(n) = a_n$$

aufgefaßt werden.

- (c) Die Vorschrift $a_n = f(n)$ heißt **Bildungsgesetz** der Folge.
- (d) Eine *endliche* Folge

$$a_1, a_2, a_3, \ldots, a_m$$

wird entsprechend geschrieben: $(a_n)_{n=1}^m$.

- Beispiele, u.a.
 - Folge der Primzahlen,
 - arithmetische Folge,
 - geometrische Folge,
 - Fibonacci-Folge.
- Beispiele für konvergente Folgen (Begriff der Konvergenz anschaulich).

Copyright © 2006, Prof. Dr. H.-R. Metz. All rights reserved.

• Definition

Die Zahlenfolge (a_n) konvergiert gegen g (strebt gegen g), wenn es zu jeder Zahl $\epsilon > 0$ einen Index $n_0(\epsilon)$ gibt, so daß

$$|a_n - g| < \epsilon$$
 für alle $n > n_0(\epsilon)$

ist. Dabei heißt g der Grenzwert (Limes) der Folge (a_n) . Schreibweise: $\lim_{n\to\infty}a_n=g$ oder $a_n\to g$ $(n\to\infty)$.

Die Folge (a_n) heißt **divergent**, wenn sie nicht konvergent ist.

• Satz

Eine konvergente Folge besitzt genau einen Grenzwert.

- Beispiele, u.a.
 - die Nullfolge $\left(\frac{1}{n}\right)_{n=1}^{\infty}$
 - die Folge $\left(\left(1+\frac{1}{n}\right)^n\right)_{n=1}^{\infty}$
 - eine bestimmt divergente Folge (Begriff des uneigentlichen Grenzwerts, Schreibweise)
 - die Folge $\left(\frac{3n^2-2n+1}{n^2+4}\right)_{n=1}^{\infty}$
 - die geometrische Folge $(q^n)_{n=0}^{\infty}$