Funktionen

Einige elementare Funktionen und ihre Eigenschaften

• Definition

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

wobei $n \in \mathbb{N}$ ist, heißt **Polynom n-ten Grades** oder **ganzrationale Funktion**. Die $a_0, \ldots, a_n \ (a_n \neq 0)$ heißen **Koeffizienten**.

- Anmerkung: Spezialfälle sind die konstante, lineare, quadratische und kubische Funktion, sowie allgemein die Potenzfunktion $y = x^n$ mit natürlichem Exponenten n.
- Satz

Es sei f(x) ein Polynom vom Grade n und x_1 eine Nullstelle von f, d.h. $f(x_1) = 0$. Dann ist

$$f(x) = (x - x_1) \cdot f_1(x)$$

mit dem 1. reduzierten Polynom f_1 , das den Grad n-1 hat, und dem Linear-faktor $(x-x_1)$.

- Anmerkung: Man berechnet f_1 durch eine Polynomdivision, bei der f durch $(x x_1)$ geteilt wird.
- Satz

Ein Polynom n-ten Grades besitzt höchstens n reelle Nullstellen.

Hat es genau n reelle Nullstellen x_1, x_2, \ldots, x_n , so gilt

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n (x - x_1)(x - x_2) \cdot \dots \cdot (x - x_n).$

• Lineare Funktionen

Der Graph einer linearen Funktion ist eine **Gerade**. Ist eine lineare Funktion in der Form y = mx + b gegeben, so ist m die Steigung der Geraden und b der Abschnitt auf der y-Achse. (Skizze zeichnen!)

Wird eine Gerade durch ihre Steigung m und durch einen Punkt $P_1(x_1|y_1)$ auf der Geraden definiert, erhält man die zugehörige Funktion wie folgt: Es

sei P(x|y) ein beliebiger Punkt ungleich P_1 auf der Geraden. Die Steigung ist dann die Differenz der y-Werte geteilt durch die Differenz der x-Werte

$$m = \frac{y - y_1}{x - x_1} \,.$$

(Skizze zeichnen!)

Ist eine Gerade durch zwei Punkte $P_1(x_1|y_1)$ und $P_2(x_2|y_2)$ gegeben, ist die Steigung zwischen P_1 und P_2 gleich der Steigung zwischen P_1 und P, also

$$\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} \, .$$

(Skizze zeichnen!)

• Quadratische Funktionen

Der Graph einer quadratischen Funktion $y = ax^2 + bx + c$ ist eine **Parabel**. Für a > 0 ist die Parabel nach oben geöffnet, für a < 0 nach unten.

Hat die Parabel Schnittpunkte mit der waagrechten Achse, berechnet man die Koordinaten durch Lösen der quadratischen Gleichung $ax^2 + bx + c = 0$. Wenn die Parabel keine Schnittpunkte mit der waagrechten Achse hat, erhält man beim Lösen der quadratischen Gleichung eine Wurzel aus einer negativen Zahl.

Definition

Der Quotient zweier Polynome

$$r(x) = \frac{a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \ldots + b_{m-1} x^{m-1} + b_m x^m}$$

heißt gebrochenrationale Funktion. Der Definitionsbereich ist

$$D(r) = \{ x \in \mathbb{R} \mid b_0 + b_1 x + \ldots + b_m x^m \neq 0 \}.$$

Für m>n ist die Funktion echt gebrochen
rational, für $m\leq n$ unecht gebrochen
rational.

• Anmerkung: Haben das Zähler- und das Nennerpolynom eine gemeinsame Nullstelle x_0 , so kann man den Linearfaktor $(x - x_0)$ kürzen. Die Definitionslücke an der Stelle x_0 wird dadurch behoben.

Hat man so weit wie möglich gekürzt, haben Zähler- und Nennerpolynom keine gemeinsame Nullstelle mehr. Die Nullstellen des Zählerpolynoms sind dann die Nullstellen der gebrochenrationalen Funktion. Die Nullstellen des Nennerpolynoms sind Polstellen (Unendlichkeitsstellen).

• Anmerkung: Ist r(x) unecht gebrochenrational, kann man die Funktion durch Polynomdivision — bei der man den Zähler durch den Nenner teilt — in

$$r(x) = p(x) + g(x)$$

zerlegen, wobei p ein Polynom und g eine echt gebrochenrationale Funktion ist. Für wachsendes x werden die Werte von g(x) immer kleiner, unabhängig vom Vorzeichen von x, so daß sich die Kurve von r immer dichter an die Kurve von p anschmiegt. Man nennt p deshalb die Asymptote von r im Unendlichen.

• Definition

Funktionen $f(x) = x^a$ mit konstantem Exponenten a und variabler Basis x heißen **Potenzfunktionen**. Im allgemeinen Fall, also für beliebige reelle Exponenten a, sind sie für positive x definiert.

- Anmerkung: In wichtigen Fällen erweitert sich der Definitionsbereich. Dazu seien nur Zahlen aus bestimmten Teilmengen von \mathbb{R} für die Exponenten zugelassen.
 - Natürliche Zahlen: $f(x) = x^n$, $n \in \mathbb{N}$. Definitionbereich ist $D(f) = \mathbb{R}$.
 - Negative ganze Zahlen: $f(x) = x^{-n} = \frac{1}{x^n}$, $n \in \mathbb{N}$. Definitionbereich ist $D(f) = \mathbb{R} \setminus \{0\}$.
 - Ist n gerade, sind die Funktionen $y=x^n$ für $x \geq 0$ streng monoton, also auf dem Intervall $[0,\infty)$ umkehrbar. Die Umkehrfunktionen sind die **Wurzelfunktionen** $f(x)=x^{1/n}=\sqrt[n]{x}$ mit $n\in\mathbb{N}$ und n gerade. Definitionbereich ist $D(f)=[0,\infty)$.
 - Ist n ungerade, sind die Funktionen $y=x^n$ auf \mathbb{R} streng monoton und somit umkehrbar. Umkehrfunktionen sind die **Wurzelfunktionen** $f(x)=x^{1/n}=\sqrt[n]{x}$ mit $n\in\mathbb{N}$ und n ungerade. Definitionbereich ist $D(f)=\mathbb{R}$.
- Anmerkung: Man beachte die Rechenregeln für Potenzen. Für $x, x_1, x_2 > 0$ und $a, b \in \mathbb{R}$ ist

$$x^{a} \cdot x^{b} = x^{a+b}$$

$$\frac{x^{a}}{x^{b}} = x^{a-b}$$

$$(x^{a})^{b} = x^{ab} = (x^{b})^{a}$$

$$x_{1}^{a} \cdot x_{2}^{a} = (x_{1} \cdot x_{2})^{a}$$

Speziell mit $m, n \in \mathbb{N}$ gilt für Wurzeln

$$x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

$$\sqrt[n]{x_1 \cdot x_2} = \sqrt[n]{x_1} \cdot \sqrt[n]{x_2}$$

$$\sqrt[m]{\sqrt[n]{x}} = \sqrt[m]{\sqrt[n]{x}}$$

Definition

Funktionen vom Typ $f(x) = b^x$ mit konstanter Basis b > 0 und $b \neq 1$ heißen **Exponentialfunktionen**. Der Exponent x ist variabel und darf beliebige reelle Werte annehmen, d.h. der Definitionsbereich ist $D(f) = \mathbb{R}$.

Von besonderer Bedeutung ist die Exponentialfunktion mit der Basis e, die e-Funktion

$$y = e^x = \exp(x)$$
.

Näherungsweise ist $e \approx 2,71$.

- Anmerkung: Man beachte, daß speziell die Rechenregeln $e^a \cdot e^b = e^{a+b}$ und $e^a/e^b = e^{a-b}$ sowie $(e^a)^b = e^{ab}$ gelten.
- Definition

Es sei b > 0 und $b \neq 1$. Die Umkehrfunktion zu $y = b^x$ heißt **Logarithmus zur Basis** b, geschrieben $f(x) = \log_b x$. Der Definitionbereich ist die Menge der positiven reellen Zahlen, $D(f) = (0, \infty)$.

Die Umkehrfunktion zur e-Funktion wird als **natürlicher Logarithmus** bezeichnet und $f(x) = \log_e x = \ln x$ geschrieben.

• Anmerkung: Für Logarithmen gelten die folgenden Rechenregeln, wobei b > 0 und $b \neq 1$ sowie $x, x_1, x_2 > 0$ und $r \in \mathbb{R}$ sei.

$$\log_b(x_1 \cdot x_2) = \log_b x_1 + \log_b x_2$$
$$\log_b\left(\frac{x_1}{x_2}\right) = \log_b x_1 - \log_b x_2$$
$$\log_b(x^r) = r \log_b x$$

Ferner ist $\log_b 1 = 0$ und $\log_b b = 1$ sowie $b^{\log_b x} = x$ und $\log_b b^x = x$.

• Anmerkung: Besonders oft wird die Beziehung

$$x^r = e^{\ln(x^r)} = e^{r \cdot \ln x}$$

verwendet, die für x > 0 und $r \in \mathbb{R}$ gilt.

• Definition

Wir definieren die *Winkelfunktionen* (auch *trigonometrische Funktionen* genannt) Sinus, Cosinus und Tangens geometrisch am Einheitskreis.

- Skizze
- Gradmaß und Bogenmaß.
- Anmerkung: Es ist $\sin(30^\circ) = 1/2$ sowie $\sin(45^\circ) = \sqrt{2}/2$ und $\sin(60^\circ) = \sqrt{3}/2$. Durch Symmetrieüberlegungen kann man dies auf andere Winkel und auf die Cosinusfunktion übertragen.
- Satz

Für beliebige $x \in \mathbb{R}$ gilt

$$\sin^2 x + \cos^2 x = 1.$$

Für alle $x \in \mathbb{R}$ mit $\cos x \neq 0$ gilt

$$\tan x = \frac{\sin x}{\cos x} \,.$$

- Satz (Eigenschaften der Winkelfunktionen)
 - 1. Periodizität

$$\sin(x+2\pi) = \sin x$$
 für alle $x \in \mathbb{R}$ (2π -periodisch)
 $\cos(x+2\pi) = \cos x$ für alle $x \in \mathbb{R}$ (2π -periodisch)
 $\tan(x+\pi) = \tan x$ für alle $x \in \mathbb{R} \setminus \{x \mid \cos x = 0\}$ (π -periodisch)

2. Symmetrie

$$\sin(-x) = -\sin x$$
$$\cos(-x) = \cos x$$
$$\tan(-x) = -\tan x$$

3. Nullstellen

$$\sin(x_n) = 0 \quad \Leftrightarrow \quad x_n = n\pi \ (n \in \mathbb{Z})$$

$$\cos(x_n) = 0 \quad \Leftrightarrow \quad x_n = \frac{\pi}{2} + n\pi \ (n \in \mathbb{Z})$$

$$\tan(x_n) = 0 \quad \Leftrightarrow \quad \sin(x_n) = 0$$

4. Pole

$$\tan(x_n) = \pm \infty \quad \Leftrightarrow \quad \cos(x_n) = 0$$

• Satz (Additionstheoreme der Winkelfunktionen) Es gilt

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta).$$