

Software-Komponenten

Th. Letschert

THM

University of Applied Sciences

Backtracking und die Plus-Monade

- Backtracking
- Plus-Monade

Backtracking und Nichtdeterministische Programme

Nichtdeterminismus als Abstraktion eines Auswahl- / Such-Mechanismus

Wähle

- <u>jetzt</u> einen (richtigen) unter mehreren Werten, derart, dass sich
- später keine Probleme ergeben

```
teilLösung <~ leereLösung
while - istFertigeLösung (teilLösung) {
    s <~ Orakel ({s | s ist möglicher nächster Schritt})
    teilLösung = teilLösung + s
}</pre>
```

Nichtdeterministischer Algorithmus:

Das Orakel wählt "mit Magie" den einen nächsten Schritt derart, dass sich später keine Probleme ergeben.

Das ist <u>kein</u> Algorithmus! Bei einem Algorithmus muss der nächste Schritt stets determiniert sein. Es handelt sich um die <u>Spezifikation</u> eines <u>Such</u>-Algorithmus, bei dem nach der / einer richtigen Folge von Auswahlschritten gesucht wird.

```
Hinweis: Neben diesem
```

```
"don't know"-Nichtdeterminismus: "Ich weiß nicht was die richtige Entscheidung ist" gibt es auch noch den "don't care"-Nichtdeterminismus: "Es ist egal welche Entscheidung getroffen wird"
```

Backtracking und Nichtdeterministische Programme

Algorithmische Realisation des Nichtdeterminismus

Nichtdeterministischer Algorithmus ~> Suche

Die Suche muss organisiert werden:

- durch den Entwickler, oder
- durch die Implementierung einer Sprache mit entsprechenden Ausdrucksmitteln

Nichtdeterminismus als Sprachmerkmal

Die Sprache liefert eine automatische Realisation der notwendigen Suche Verbreitete "Nichtdeterministische Sprachen" sind Logik-Sprachen z.B. Prolog

Choice-Fail: Abstrakte Implementierung des Nichtdeterminismus

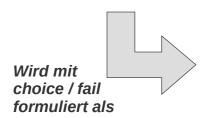
Choice - Fail

Nichtdeterminismus kann abstrakt definiert werden mit zwei Operationen:

- choice (Alternativen)
 deklariert Entscheidungs-Alternativen als Wert.
- fail

bringt zum Ausdruck, dass keine Entscheidungsalternativen mehr zur Verfügung stehen und die Berechnung gescheitert ist.

```
teilLösung ← leereLösung
while - istFertigeLösung (teilLösung) {
    s ← Orakel ({s | s ist möglicher nächster Schritt})
    teilLösung = teilLösung + s
}
```



```
teilLösung ← leereLösung
while ¬ istFertigeLösung (teilLösung) {
    s ← choice ({s | s ist möglicher nächster Schritt})
    teilLösung = teilLösung + s
    if (nichtOK(teilLösung)) fail
}
```

Choose-Fail: Abstraktion des Backtrackings

Choose - Fail

liefert eine Abstraktion der erschöpfenden Suche mit einem Backtracking-Algorithmus

Backtracking

ist eine Implementierungs-Variante für Choice-/Fail-Nichtdeterminismus:

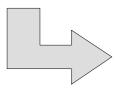
- choose (Alternativen)
 liefert eine der Entscheidungs-Alternativen als Wert.
 Speichert die aktuelle Situation (mit den noch nicht ausgewählten Werten).
- fail
 geht zurück zur letzten Auswahl, deren Alternativen noch nicht erschöpft sind.
 Von dort (der gespeicherten Situation bei Auswahl) aus weiter mit der nächsten Wahl.

Choose-Fail: Abstraktion des Backtrackings

Mit Backtracking kann der Choose- / Fail- Mechanismus implementiert werden

Der Laufzeitstack dient dabei als Speicher der aktuelle Situation bei einer Auswahl Dazu muss muss die <u>Auswahl</u> stets mit einem (rekursiven) <u>Funktionsaufruf</u> verbunden werden.

```
teilLösung ← leereLösung
while r istFertigeLösung (teilLösung) {
    s ← choose ({s | s ist möglicher nächster Schritt})
    teilLösung = teilLösung + s
    if (nichtOK(teilLösung)) fail
}
```



Wird implementiert mit Hilfe des Stacks

Choose-Fail als Programm-Komponente

Choice / Fail als Bestandteile einer generischen Komponente

Neben der Möglichkeit Choice/Fail durch den

- Sprache-Implementierer, oder
- Programm-Implementierer

zu realisieren,

gibt es noch die Möglichkeit sie als Bestandteile einer

- Programmkomponente,
- eventuell als Teil einer Bibliothek

zu realisieren.

Beispiel Pythagoreische Tripel

Nichtdeterrministisches Programm (-Spezifikation)

Berechnung eines oder aller pythagoreischen Tripel (x, y, z mit $x^2 + y^2 = z^2$)

```
def triple() = {
  val i = choose(2, 3, 4, 5)
  val j = choose(2, 3, 4, 5)
  val k = choose(2, 3, 4, 5)
  if (i*i + j*j != k*k) fail()
  succeed(i, j, k)
}
```

Choice/Fail-Algorithmus

Wähle drei Zahlen i, j, k

Wenn i, j und k kein pythagoreisches Tripel bilden, dann war die Wahl falsch, ansonsten sind sie die Lösung oder eine der Lösungen

Nichtdeterminismus: 2 Implementierungen

- 2 Implementierungen der nichtdeterministischen Programm-Spezifikation
 - a) Alle Lösungen suchen, mit funktionalem Algorithmus
 - b) Eine Lösung suchen, mit imperativem Algorithmus

```
type Triple = (Int, Int, Int)

def allPTriples: List[Triple] =
   for (i <- List(1, 2, 3, 4, 5);
        j <- List(1, 2, 3, 4, 5);
        k <- List(1, 2, 3, 4, 5);
        if i * i + j * j == k * k)
        yield (i, j, k)

val pTripleList = allPTriples //List((3,4,5), (4,3,5))</pre>
```

Funktionale Implementierung, bestimmt <u>alle</u> Lösungen. Der Suchraum wird komplett traversiert.

```
def aPTriple_Imp: Triple = {
  for (i <- List(1, 2, 3, 4, 5))
    for (j <- List(1, 2, 3, 4, 5))
     for (k <- List(1, 2, 3, 4, 5)) {
      if (i * i + j * j == k * k)
         return (i, j, k)
     }
  throw new Exception("no triple found")
}

val pTriple = aPTriple_Imp //(3,4,5)</pre>
```

Imperative Implementierung, bestimmt eine Lösung. Der Suchraum wird solange traversiert, bis eine Lösung gefunden wurde, oder alle Kandidaten untersucht sind.

Ganz und gar imperativ:

- Konrolltransfer mit return und throw
- Imperative Schleifen

Nichtdeterminismus – generisch

Backtracking bzw. Lösungsmenge suchen sind jeweils nur eine Möglichkeit Nichtdeterminismus zu implementieren Generischer ND Algorithmus:

- ND Algorithmus ohne Angabe der Implementierung
- Spezifiziert mit den Kern-Mechanismen des Nichtdeterminismus:
 - Auswahl: choose
 - Erfolg: succeed
 - Fehlschlag: fail
- Mit den beiden Implementierungen (Lösungsmenge / Backtracking)
 als Instanzen des generischen Algorithmus

```
def triple() = {
  val i = choose(2, 3, 4, 5)
  val j = choose(2, 3, 4, 5)
  val k = choose(2, 3, 4, 5)
  if (i*i + j*j != k*k) fail()
  succeed(i, j, k)
}

Eine Lösung
}
```

```
def triple: Triple = {
  for (i <- List(1, 2, 3, 4, 5))
    for (j <- List(1, 2, 3, 4, 5))
    for (k <- List(1, 2, 3, 4, 5)) {
      if (i * i + j * j == k * k)
         return (i, j, k)
      }
  throw new Exception("no triple found")
}</pre>
```

Hier muss natürlich noch alles <mark>Imperative</mark> vertrieben werden!

Nichtdeterminismus – generisch: MonadPlus

Die Mechanismen des Nichtdeterminismus:

- Auswahl: choose

– Erfolg: succeed

- Fehlschlag: fail

können in einer Typklasse MonadPlus gekapselt werden

Suchen nach einer Lösung : (funktionales !) Backtracking sollte als Instanz von MonadPlus definierbar sein

Suchen nach allen Lösungen : funktionaler Algorithmus zur Bestimmung aller Lösungen sollte als Instanz von MonadPlus definierbar sein

```
type Triple = (Int, Int, Int)

def triple[M[_]: MonadPlus](): M[Triple] =
   for ( i <- MonadPlus[M].choose(2, 3, 4, 5);
        j <- MonadPlus[M].choose(2, 3, 4, 5);
        k <- MonadPlus[M].choose(2, 3, 4, 5);
        r <- (if (i*i + j*j == k*k) MonadPlus[M].succeed(Tuple3(i, j, k)) else MonadPlus[M].fail))
        yield r</pre>
```

Nichtdeterminismus – generisch: MonadPlus

MonadPlus muss eine Monade sein und zudem noch fail / succeed und choose definieren:

```
trait Functor[F[_]] {
   extension[A, B] (fa: F[A]) {
    def map(f: A => B): F[B]
   }
}
trait Monad[F[_]] extends Functor[F] {
   def pure[A](x: A): F[A]
   extension[A, B] (x: F[A]) {
     def flatMap(f: A => F[B]): F[B]
     def map(f: A => B) = x.flatMap(f.andThen(pure))
   }
}
object Monad {
   def apply[F[_]: Monad] = summon[Monad[F]]
}
```

```
trait MonadPlus[M[_]] extends Monad[M] {
  def fail[A]: M[A]
  def succeed[A](a:A) = pure(a)
  def choose[A](alternatives: A*): M[A] = ???
}
object MonadPlus {
  def apply[M[_]: MonadPlus] = summon[MonadPlus[M]]
}
```

Nichtdeterminismus – generisch: MonadPlus

MonadPlus

Eine Monade mit plus (~ +) und fail (~ 0)

```
trait MonadPlus[M[_]] extends Monad[M] {
    def fail[A]: M[A]
    def succeed[A](a:A) = pure(a)

    def choose[A](alternatives: List[A]): M[A] =
        alternatives.foldLeft(fail[A])(
        (acc, i) => acc plus pure(i)
    )

    def choose[A](alternatives: A*): M[A] =
        choose(alternatives.toList)

    extension[A, B] (x: M[A]) {
        def plus(y: M[A]): M[A]
    }
}
object MonadPlus {
    def apply[M[_]: MonadPlus] = summon[MonadPlus[M]]}
```

succeed nimmt einen Wert und verpackt ihn in der Monade, dazu haben wir schon ein pure.

choose wählt einen aus vielen Werten, wir reduzieren es auf eine Basis-Operation plus. Die zweite Variante dient der Bequemlichkeit beim Aufruf.

plus wählt zwischen zwei Werten. Die letzte Wahl, wenn nichts mehr zu wählen gibt, ist natürlich fail.

List als MonadPlus

Instanzierung von MonadPlus mit List

Listen sind eine recht offensichtliche Instanz von MonadPlus

```
given MonadPlus[List] with {
                                                                      succeed = pure: Der Wert gehört zur
  def pure[A](x: A): List[A] = List(x)
                                                                      Lösungsmenge
  def fail[A]: List[A] = Nil
  extension [A, B](xs: List[A]) {
                                                                      fail : Die Lösungsmenge ist leer
    def flatMap(f: A => List[B]): List[B] = xs.flatMap(f)
    override def map(f: A => B) = xs.map(f)
                                                                      plus vereinigt zwei potentielle (!)
    def plus(y: List[A]): List[A] = xs ::: y
                                                                      Lösungsmengen.
val allTriples = triple() // List((4,3,5), (3,4,5))
                                                            def triple[M[]: MonadPlus](): M[Triple] =
                                                              for ( i <- MonadPlus[M].choose(2, 3, 4, 5);</pre>
                                                                     j <- MonadPlus[M].choose(2, 3, 4, 5);</pre>
                                                                     k <- MonadPlus[M].choose(2, 3, 4, 5);</pre>
                                                                     r <- if (i*i + j*j == k*k)
                                                                            MonadPlus[M].succeed((i, j, k))
                                                                          else MonadPlus[M].fail)
                                                                yield r
```

Generischer Algorithmus

List als MonadPlus

Instanzierung von MonadPlus mit List

Ok, aber funktioniert das auch mit einem rekursiven solve?

```
def triple[M[]: MonadPlus](): M[Triple] = {
  def OK(chosen: List[Int]): Boolean = chosen match {
    case i :: j :: k :: _ => i * i + j * j == k * k
  extension (lst: List[Int]) {
    def toTriple: Triple = lst match {
      case i :: j :: k :: _ => (i, j, k)
  def solve(ijk: List[Int]): M[Triple] =
    if (ijk.length < 3) {</pre>
      for (x <- MonadPlus[M].choose(2,3,4,5);</pre>
           s <- solve(ijk ++ List(x)))
        yield s
    } else
      if (0K(ijk))
        MonadPlus[M].succeed(ijk.toTriple)
      else MonadPlus[M].fail
  solve(Nil)
                                    Generischer Algorithmus
```

```
given MonadPlus[List] with {
  def pure[A](x: A): List[A] = List(x)
  def fail[A]: List[A] = Nil
  extension [A, B](xs: List[A]) {
    def flatMap(f: A => List[B]): List[B] =
        xs.flatMap(f)
    override def map(f: A => B) = xs.map(f)
    def plus(y: List[A]): List[A] = xs ::: y
  }
}
Instanz der Typklasse
```

```
val allTriples = triple()
List((4,3,5), (3,4,5))
```

List als MonadPlus

Instanzierung von MonadPlus mit List

Ok, aber funktioniert das auch mit den n Damen?

```
def queens[M[_]:MonadPlus](n: Int): M[List[Int]] = {
  def Ok(board: List[Int]): Boolean =
    (for (i <- 0 until board.length;</pre>
          j <- i + 1 until board.length</pre>
          ) vield {
      val(x, y) = (board(i), board(j))
                                                               }
      val d = j - i
      !(x == y || y == x - d || y == x + d)
    }).find( == false)
      .get0rElse(true)
  val alternatives = (0 until n).map(List(_)).toList
  def solve(chosen: List[Int]): M[List[Int]] =
    if (0k(chosen)) {
      if (chosen.length == n) {
        MonadPlus[M].pure(chosen)
      } else {
        for (i: List[Int] <- MonadPlus[M].choose(alternatives);</pre>
             s: List[Int] <- solve(chosen ::: i))
          yield s
    } else MonadPlus[M].fail
  solve(Nil)
                                             Generischer Algorithmus
```

```
given MonadPlus[List] with {
  def pure[A](x: A): List[A] = List(x)
  def fail[A]: List[A] = Nil
  extension [A, B](xs: List[A]) {
    def flatMap(f: A => List[B]): List[B] =
        xs.flatMap(f)
    override def map(f: A => B) = xs.map(f)
    def plus(y: List[A]): List[A] = xs ::: y
  }
}
Instanz der Typklasse
```

```
val fourQueens = queens(4)
List(List(1, 3, 0, 2), List(2, 0, 3, 1))
```

Backtracking (funktional) als MonadPlus

Instanzierung von MonadPlus mit Backtracking-Implementierung
Dazu brauchen wir einen Backtracking-Typ der Instanz von MonadPlus sein kann

Rückblick: Funktionales Backtracking: BT mit Failure/Sucess – Continuations (siehe Foliensatz 9)

```
Als Instanz von
                                                                                  MonadPlus: ???
def solve(t: List[Int], ksucc: List[Int] => Unit, kfail: => Unit): Unit = {
    def loop(x: Int): Unit = {
                                                                                t ++ [x]
      if (x == n)
        kfail // Backtrack
      else {
        val t extended = t ++ List(x)
        if (0k(t extended)) {
                                                                                ksucc t ++ [x+1]
          solve(t extended, ksucc, loop(x + 1))
        } else {
          loop(x + 1)
                                                                                     ksucc t ++ [x+2]
    if (t.length == n)
      ksucc(t)
    else
      loop(0) // ~ for (x <- 0 until n)
                                                                                         ksucc
  }
                                                                                                  kfail
  solve(Nil, lst => println(lst), println("Failed"))
```

Backtracking (BT) – funktional: Pythagoreische Tripel

Ein pythagoreisches Tripel – BT-Algorithmus funktional

Wir starten wieder mit dem einfacheren Beispiel der pythagoreischen Tripel Ein funktionaler BT-Algorithmus ist:

```
type SuccessCont = Triple => Unit
type FailureCont = () => Unit
def triple(ksucc: SuccessCont, kfail: FailureCont): Unit = {
  def solve(ijk: List[Int], ksucc: SuccessCont, kfail: FailureCont): Unit = {
    def loop(x: Int) : Unit =
      if (x > 5)
        kfail()
      else {
        val chosen extended = ijk.appended(x)
        solve(chosen extended, ksucc, () => loop(x+1))
                                                             mit:
    if (ijk.length == 3) {
                                                            type Triple = (Int, Int, Int)
      if (OK(ijk)) ksucc(ijk.toTriple)
      else kfail()
                                                            def OK(chosen: List[Int]): Boolean = chosen match {
                                                              case i :: j :: k :: _ => i * i + j * j == k * k
    } else {
      loop(1)
                                                            extension (lst: List[Int]) {
                                                              def toTriple: Triple = lst match {
  solve(Nil, ksucc, kfail)
                                                                case i :: j :: k :: _ => (i, j, k)
                                                            }
```

Backtracking – funktional: Pythagoreische Tripel

Version mit entfalteter Rekursion / so geht es auch:

```
def triple(ksucc: SuccessCont, kfail: FailureCont): Unit = {
 def solve(ijk: List[Int], ksucc: SuccessCont, kfail: FailureCont): Unit =
    if (ijk.length == 3) {
      if (OK(ijk)) ksucc(ijk.toTriple)
      else kfail()
    } else {
      solve(
        ijk.appended(1),
        ksucc,
        () => solve(
          ijk.appended(2),
          ksucc,
          () => solve(
            ijk.appended(3),
            ksucc,
            () => solve(
              ijk.appended(4),
              ksucc.
              () => solve(
                ijk.appended(5),
                ksucc, kfail
  solve(Nil, ksucc, kfail)
```

Backtracking – funktional: Pythagoreische Tripel

Die beiden Continuations können in eine Klasse / ein Objekt gepackt werden:

```
type SuccessCont = Triple => Unit
type FailureCont = () => Unit
case class ContDuo (ksucc: SuccessCont, kfail: FailureCont)
def triple(contduo: ContDuo): Unit = {
  def solve(ijk: List[Int], kduo: ContDuo): Unit = {
    def loop(x: Int) : Unit =
      if (x > 5)
        kduo.kfail()
      else {
        val chosen extended = ijk.appended(x)
        solve(chosen_extended, ContDuo(kduo.ksucc, () => loop(x+1)) )
    if (ijk.length == 3) {
      if (OK(ijk)) kduo.ksucc(ijk.toTriple)
      else kduo.kfail()
    } else {
      loop(1)
  solve(Nil, contduo)
triple(ContDuo(triple => println(triple), () => println("Failure")))
```

Backtracking – funktional: Pythagoreische Tripel

Etwas Curry hilft immer:

```
type SuccessCont = Triple => Unit
type FailureCont = () => Unit
 case class ContDuo (ksucc: SuccessCont, kfail: FailureCont)
def triple_CPS: ContDuo => Unit = {
  def solve(ijk: List[Int]) : ContDuo => Unit = {
     def loop(x: Int): ContDuo => Unit =
       if (x > 5)
        kduo => kduo.kfail()
       else
         kduo => solve(ijk.appended(x))(ContDuo(kduo.ksucc, () => loop(x+1)(kduo)))
     if (ijk.length == 3) {
       if (OK(ijk)) kduo => kduo.ksucc(ijk.toTriple)
       else kduo => kduo.kfail()
    } else {
       kduo => loop(1)(kduo)
  contDuo => solve(Nil)(contDuo)
triple(ContDuo(triple => println(triple), () => println("Failure")))
```

Das ändert erst mal nicht viel

Backtracking – funktional: Pythagoreische Tripel

Noch eine Typdefinition: ContDuoToUnit = (ContDuo => Unit)

```
type SuccessCont = Triple => Unit
type FailureCont = () => Unit
case class ContDuo (ksucc: SuccessCont, kfail: FailureCont)
type ContDuoToUnit = ContDuo => Unit
def triple_CPS: ContDuoToUnit = {
  def solve(ijk: List[Int]) : ContDuoToUnit = {
    def loop(x: Int): ContDuoToUnit =
      if (x > 5)
         kduo => kduo.kfail()
       else
         kduo => solve(ijk.appended(x))(ContDuo(kduo.ksucc, () => loop(x+1)(kduo)))
    if (ijk.length == 3) {
      if (OK(ijk)) kduo => kduo.ksucc(ijk.toTriple)
       else kduo => kduo.kfail()
    } else {
       kduo => loop(1)(kduo)
  contDuo => solve(Nil)(contDuo)
triple(ContDuo(triple => println(triple), () => println("Failure")))
```

BT – eine (zukünftige) Instanz von MonadPlus

BT als Umschlagklasse für ContDuoToUnit

Beispiel Tripel mit den (noch zu implementierenden) MonadPlus-Methoden

```
type SuccessCont[T] = T => Unit
type FailureCont = () => Unit
case class BT[A](kduo: (ksucc: SuccessCont[A], kfail: FailureCont) => Unit)
extension[A, B] (x: BT[A]) {
  def flatMap(f: A => BT[B]): BT[B] = ???
  def map(f: A => B): BT[B] = ???
  def plus(y: BT[A]): BT[A] = ???
def chooseBT[A](alternatives: List[A]): BT[A] = ???
def chooseBT[A](alternatives: A*): BT[A] = chooseBT(alternatives.toList)
def pureBT[A](a: A): BT[A] = ???
def succeedBT[A](a: A): BT[A] = pureBT(a)
def failBT[A]: BT[A] = ???
type Triple = (Int, Int, Int)
def triple(): BT[Triple] =
  for (i < -chooseBT(2, 3, 4, 5);
        j \leftarrow chooseBT(2, 3, 4, 5);
        k \leftarrow chooseBT(2, 3, 4, 5);
        r <- if (i*i + j*j == k*k) succeedBT((i, j, k)) else failBT[Triple] )
    yield r
```

BT als Umschlagklasse für

ContDuo => Unit

BT – ein monadischer Backtrack-Typ

Triple mit rekursivem Algorithmus

```
def triple(): BT[Triple] = {
  def OK(chosen: List[Int]): Boolean = chosen match {
    case i :: j :: k :: _ => i * i + j * j == k * k
  extension (lst: List[Int]) {
    def toTriple: Triple = lst match {
      case i :: j :: k :: _ => (i, j, k)
  }
  def solve(ijk: List[Int]): BT[Triple] =
    if (ijk.length < 3) {</pre>
      for (x <- chooseBT(2,3,4,5);</pre>
           s <- solve(ijk ++ List(x)))</pre>
        vield s
    } else {
      if (OK(ijk)) succeedBT(ijk.toTriple)
      else failBT[Triple]
    }
  solve(Nil)
```

BT – ein monadischer Backtrack-Typ

pure und fail

pure repräsentiert einen Wert, der an die Success-Continuation übergeben werden kann fail aktiviert die Failure-Continuation

```
def pureBT[A](a: A): BT[A] =
   BT[A]( (ksucc, kfail) => ksucc(a) )

def failBT[A]: BT[A] =
  BT[A]( (ksucc, kfail) => kfail() )
```

BT – ein monadischer Backtrack-Typ

map und flatMap

map delegieren wir der Einfachheit halber an flatMap flatMap verkettet Berechnungen / setzt eine erfolgreiche Berechnung fort

BT – ein monadischer Backtrack-Typ

choose

wird wieder auf plus reduziert:

```
def chooseBT[A](alternatives: List[A]): BT[A] =
   alternatives.foldLeft(failBT[A])(
      (acc, i) => acc.plus(pureBT(i))
   )

def chooseBT[A](alternatives: A*): BT[A] = chooseBT(alternatives.toList)
```

BT – ein monadischer Backtrack-Typ

plus

plus repräsentiert alternative Ausführungen, wenn die erste fehlschlägt, nimm die zweite

Probiere es mit der einen Berechnung, x. Wenn das schief geht, dann probiere es mit der anderen, y.

BT – ein monadischer Backtrack-Typ

Hmm - So einfach nicht!

```
tripleA().kduo( (res: Triple) => println(res), () => println("failure"))
    ~> failure
```

BT – ein monadischer Backtrack-Typ / verbessert

plus und flatMap

Die Definitionen sind Typ-korrekt und für sich überzeugend, aber flatMap (Verkettung von Aktionen) und plus (Auswahl von Aktionen) kooperieren nicht.

flatMap muss "von links über plus distribuieren": (x plus y) flatMap f = (x flatMap f) plus (y flatMap f)

es muss also egal sein, ob ich

- eine Wahl zwischen x und y treffe und dann mit f weiter mache, oder ob ich
- Eine Wahl treffe zwischen "x und dann f" oder "y und dann f"

Dieses "von links distribuieren" ist bei den Definitionen, so wie sie sind, nicht gewährleistet.

```
def flatMap(f: A => BT[B]): BT[B] =
   BT(
    (ks: SuccessCont[B], kf:FailureCont) =>
        x.kduo(
        (a:A) => f(a).kduo(ks, kf),
        kf)
)
```

f "kommt nicht in die failure-Continuation"!

BT - ein monadischer Backtrack-Typ / verbessert

plus und flatMap

Definiere plus und flatmap derart, dass flatMap von links über plus distribuiert:

```
(x plus y) flatMap f = (x flatMap f) plus (y flatMap f)
```

Hier einfach mit einer angepassten Klasse, die Plus erhält:

Die Plus-Variante speichert die Alternativen.

Die Cont-Variante entspricht der bisherigen BT-Definition.

Bei der Anwendung / Ausführung kann in der Plus-Variante auf die Alternativen x und y zugegriffen werden und y wird zur Failure-Continuation von x.

BT - ein monadischer Backtrack-Typ / verbessert

plus und flatMap

Definiere plus und flatmap derart, dass flatMap von links über plus distribuiert:

```
(x plus y) flatMap z = (x flatMap z) plus (y flatMap z)
extension[A, B] (x: BT[A]) {
  def flatMap(f: A => BT[B]): BT[B] = x match {
```

```
case Cont(k2U) =>
    Cont(
       (ks, kf) =>
         k2U((a:A) =>
           f(a) match {
             case Cont(k2U) => k2U(ks, kf)
                                                                Cont-Variante: wie oben
             case Plus(x, y) =>
                x (
                  a \Rightarrow ks(a)
                                                                Plus-Variante: x und
                  () \Rightarrow y(ks, kf)
                                                                falls das schief geht y
           }, kf)
  case Plus(x, y) =>
                                                                flatMap wird von links über Plus distributiert
    Plus[B](x.flatMap(f), y.flatMap(f))
}
def map(f: A \Rightarrow B): BT[B] = flatMap((a: A) \Rightarrow pureBT(f(a)))
def plus(y: BT[A]): BT[A] = Plus(x, y)
                                                               plus speichert die Alternativen in einem Plus
```

BT – ein monadischer Backtrack-Typ / verbessert

choose / pure / succed / fail

da ändert sich nichts:

```
def chooseBT[A](alternatives: List[A]): BT[A] =
   alternatives.foldLeft(failBT[A])(
      (acc, i) => acc.plus(pureBT(i))
)

def chooseBT[A](alternatives: A*): BT[A] = chooseBT(alternatives.toList)

def pureBT[A](a: A): BT[A] =
      Cont[A]( (ksucc, kfail) => ksucc(a) )

def failBT[A]: BT[A] =
      Cont[A]( (ksucc, kfail) => kfail() )

def succeedBT[A](a: A): BT[A] = pureBT(a)
```

BT – ein monadischer Backtrack-Typ / verbessert

Backtracking mit BT:

Mit for-Comprehension

Mit Rekursion

```
tripleA()( (res: Triple) => println(res), () => println("failure"))
tripleB()( (res: Triple) => println(res), () => println("failure"))
```

BT - eine Instanz von MonadPlus

Jetzt bietet BT alles um ein MonadPlus zu sein

Zur Vermeidung von Konfusion (des Compilers ?) werden die BT-Methoden mit BT markiert:

```
extension[A, B] (x: BT[A]) {
  def flatMapBT(f: A => BT[B]): BT[B] = x match {
    case Cont(k2U) =>
      Cont(
        (ks, kf) =>
          k2U((a:A) =>
            f(a) match {
              case Cont(k2U) => k2U(ks, kf)
              case Plus(x, y) =>
                 х(
                   a => ks(a)
                   () \Rightarrow y(ks, kf)
            }, kf)
    case Plus(x, y) =>
      Plus[B](x.flatMapBT(f), y.flatMapBT(f))
  }
  def mapBT(f: A \Rightarrow B): BT[B] =
    flatMapBT((a: A) => pureBT(f(a)))
  def plusBT(y: BT[A]): BT[A] =
    Plus(x, y)
```

BT mit der notwendigen MonadPlus Funktionalität ausstatten

BT – eine Instanz von MonadPlus

Jetzt bietet BT alles um ein MonadPlus zu sein und kann als MonadPlus-Instanz definiert werden:

```
given MonadPlus[BT] with {
  def pure[A](x: A): BT[A] = pureBT(x)
  def fail[A]: BT[A] = failBT[A]
  extension [A, B](x: BT[A]) {
    def flatMap(f: A => BT[B]): BT[B] = x.flatMapBT(f)
    override def map(f: A => B) = x.mapBT(f)
    def plus(y: BT[A]): BT[A] = x plusBT (y)
  }
}
```

BT als Instanz von MonadPlus erklären

BT - eine Instanz von MonadPlus

Generische Backtracking Algorithmen können ausgeführt werden / Beispiel 1

BT - eine Instanz von MonadPlus

Generische Backtracking Algorithmen können ausgeführt werden / Beispiel 2

```
def queensGen[M[_]:MonadPlus](n: Int): M[List[Int]] = {
  def Ok(board: List[Int]): Boolean =
    (for (i <- 0 until board.length;
          j <- i + 1 until board.length</pre>
          ) yield {
      val(x, y) = (board(i), board(j))
      val d = i - i
      !(x == y || y == x - d || y == x + d)
    }).find(_ == false)
      .get0rElse(true)
  val alternatives = (0 until n).map(List( )).toList
  def solve(chosen: List[Int]): M[List[Int]] =
    if (Ok(chosen)) {
      if (chosen.length == n) {
        MonadPlus [M] pure (chosen)
      } else {
        for (i: List[Int] <- MonadPlus[M].choose(alternatives);</pre>
             s: List[Int] <- solve(chosen ::: i))
          yield s
    } else MonadPlus[M].fail
  solve(Nil)
def q[M[_]: MonadPlus]: M[List[Int]] = queensGen(4)
q.apply( (res: List[Int]) => println(res), () => println("failure"))
```