Klausur Mathematik II

WS 2010 10.02.2011

Studium EI

Name:	Vorname:	Matrikelnummer:	Bachelor ${f B}$
			$\mathrm{Diplom}\;\mathbf{D}$

Folgende Hinweise bitte unbedingt zuerst durchlesen und beachten:

- Aufgabenblatt bitte sofort in GROSSER DRUCKSCHRIFT ausfüllen
- die Bearbeitungszeit beträgt 90 Minuten
- bei Bachelor großes B, bei Diplom großes D in der rechten oberen Ecke eintragen
- alle abzugebenden Blätter sind mit Ihrem Namen zu kennzeichnen
- für jede Aufgabe bitte ein neues Blatt beginnen
- Lösungen gelten nur, wenn alle Zwischenschritte erkennbar sind
- nur die in der Vorlesung behandelten Programme sind erlaubt
- bitte RUNDEN Sie auf fünf Nachkommastellen
- ein selbsterstelltes Blatt mit Formeln ist zulässig, keine weiteren Hilfsmittel
- Abgabe: Aufgabenblatt, Aufgaben in richtiger Folge 1,2,3..., keine Klammerheftung
- 1) Bestimmen Sie die partiellen Ableitungen (bezüglich x,y und z) der folgenden Funktionen:

a)
$$f(x, y, z) = 3xy^2 + z^2 (\cos(x) - \sin(z)y^2)$$

b) $h(x, y, z) = 3z^2 e^{2x} y \cdot \cos(y) - 3y^2 (2z + 3)^2 - 5\sqrt{x}$

2) B bezeichne das Flächenstück, dass von der Y-Achse und den Funktionen f(x)=3 und g(x)=x eingeschlossen wird (Skizze!). Bestimmen Sie

$$\iint\limits_{R} (3x^2y + 3) \ dxdy$$

3) Bestimmen Sie den Umfang der Fläche M, die von den Funktionen $f(x) = e^{x^2}$ und g(x) = x + 2 eingeschlossen wird (Skizze!), mit dem Simpson-Verfahren (n = 16) und führen Sie eine Fehlerabschätzung durch.

- 4) Es seien das Kraftfeld $F(x, y, z) = (3y^2 + e^{x+2z}, 6xy + 3z, 2e^{x+2z} + 3y)$ und die Kurven $k_1(t)=(t,1-t,2)$, $k_2(t)=(1-t^2,e^t,\sin(t\pi))$ mit $t\in[0,2]$ gegeben.
 - a) Wo beginnen und enden die Kurven $k_1(t)$ und $k_2(t)$?
 - b) Ist F(x, y, z) ein Gradientenfeld?
 - c) Berechnen Sie $\int_{L} F$ für den geradlinigen Weg k_3 von P(1/1/0) nach Q(0/0/1).
 - d) Wie verändert sich $\int F,$ falls man den Anfangspunkt P und den Endpunkt Q des Weges aus Aufgabenteil c) vertauscht?
- 5) Lösen Sie die folgenden Differentialgleichungen exakt und bestimmen Sie jeweils y(1):

 - a) $y'y 2 = -x^3$ mit y(0) = 2b) $2y' 2e^{x-y} = 0$ mit $y(0) = \ln(2)$
- 6) Bestimmen Sie die allgemeine homogene Lösung sowie den Ansatz für eine spezielle inhomogene Lösung der folgenden Differentialgleichung:

$$y'''' + 2y''' - 13y'' - 14y' + 24y = 3e^{x}(x^{2} + x) + \sin(x)$$

- 7) Drei Freunde spielen ein Kartenspiel mit 32 Skat-Karten. Jeder von Ihnen erhält 8 Karten. Wie groß ist die Wahrscheinlichkeit, dass
 - a) Spieler 1 alle 4 Asse bekommt?
 - b) Spieler 1 und Spieler 2 zusammen 3 Buben bekommen?
 - c) keiner der Spieler ein Ass bekommt?

Hinweis: Es gibt von jeder Sorte (z.B: Bube, Dame, Ass) jeweils 4 Karten im Skatspiel

- 8) In einer Urne befinden sich doppelt so viele rote Kugeln wie weiße Kugeln. Insgesamt befinden sich 15 Kugeln in der Urne. Wie groß ist die Wahrscheinlichkeit, dass
 - a) Sie beim Ziehen der dritten Kugel eine weiße Kugel ziehen, falls Sie jede Kugel nach dem Ziehen wieder zurücklegen?
 - b) Sie beim Ziehen der zweiten Kugel eine rote Kugel ziehen, falls Sie die erste Kugel nach dem Ziehen nicht zurücklegen?

Aufgabe	1	2	3	4	5	6	7	8	\sum
Punkte	6	4	5	6	4	6	6	4	41
Erreicht									